A novel calmodulin antagonist, CGS 9343B, modulates calcium-dependent changes in neurite outgrowth and growth cone movements.
نویسندگان
چکیده
The neurotransmitter 5-HT alters growth cone motility and neurite elongation in neuron B19, isolated from the buccal ganglion of Helisoma trivolvis (Haydon et al., 1984). The effects of 5-HT are mediated by increases in intracellular calcium levels within the growth cones (Cohan et al., 1987). 5-HT causes a receptor-mediated depolarization of the membrane, which results in the opening of voltage-sensitive calcium channels. The resulting calcium influx decreases both the elongation rate and the total outgrowth of neurites. However, the mechanism(s) mediating these calcium-dependent changes is unclear. As many of the intracellular effects of calcium in eukaryotic cells are mediated by the calcium-binding protein calmodulin, we tested the involvement of such an interaction in the regulation of neurite outgrowth. In these experiments, a new, potent calmodulin antagonist with increased selectivity, CGS 9343B (CGS; Norman et al., 1987), was used to inhibit calmodulin activity during the application of 5-HT to neuron B19. The addition of 100 microM 5-HT to the culture medium resulted in a significant decrease in the rate of neurite elongation and total neurite outgrowth. Administration of CGS to the culture medium at a concentration (1.8 microM) equivalent to its IC50 for calmodulin inhibition completely blocked the inhibitory effects of 100 microM 5-HT, on both neurite elongation and total neurite outgrowth. CGS alone caused a slight decrease in elongation rate but had no significant effect on total outgrowth. CGS did not block 5-HT-induced electrical activity, indicating that it was not acting as a 5-HT receptor antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Depolarization-induced neurite outgrowth in PC12 cells requires permissive, low level NGF receptor stimulation and activation of calcium/calmodulin-dependent protein kinase.
Neuronal activity is required for normal neural development. Excessive activity can cause abnormal growth of neural processes and may contribute to formation of epileptic foci. Using PC12 cells, we investigated mechanisms by which depolarization regulates neurite growth. Depolarization with 45 mM KCl induced neurite outgrowth only if NGF receptors were partly activated by overexpression of p140...
متن کاملRegulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I.
Calcium and calmodulin (CaM) are important signaling molecules that regulate axonal or dendritic extension and branching. The Ca2+-dependent stimulation of neurite elongation has generally been assumed to be mediated by CaM-kinase II (CaMKII), although other members of the CaMK family are highly expressed in developing neurons. We have examined this assumption using a combination of dominant-ne...
متن کاملSmall GTPase Rin induces neurite outgrowth through Rac/Cdc42 and calmodulin in PC12 cells
The novel Ras-like small GTPase Rin is expressed prominently in adult neurons, and binds calmodulin (CaM) through its COOH-terminal-binding motif. It might be involved in calcium/CaM-mediated neuronal signaling, but Rin-mediated signal transduction pathways have not yet been elucidated. Here, we show that expression of Rin induces neurite outgrowth without nerve growth factor or mitogen-activat...
متن کاملLuteolin Induces microRNA-132 Expression and Modulates Neurite Outgrowth in PC12 Cells
Luteolin (3',4',5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decreas...
متن کاملCalcium regulation of neurite elongation and growth cone motility.
Neurite outgrowth from isolated, identified molluscan (Helisoma trivolvis) neurons in culture can be suppressed by neurotransmitters and electrical activity, both of which increase intraneuronal Ca2+ levels (Haydon et al., 1984; Cohan et al., 1986, 1987). We explored the possibility of a causal relationship between Ca2+ influx from the cell exterior and neurite outgrowth using a spectrum of pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 2 شماره
صفحات -
تاریخ انتشار 1991